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S U M M A R Y  
In this paper a set of exact nonlinear equations is derived for gravity flows. By assuming the flow to be shallow and 
assuming the vertical acceleration to be small these equations reduce to the classical equations for long waves in 
shallow water. If only shallowness is assumed a set of equations results, which admits in the steady case periodic 
solutions for Froude numbers smaller than 1 and laminar jumps for Froude numbers larger than 1. In the last section 
potential flows are discussed. 

1. Introduction 

Of all the oscillatory phenomena in nature, water waves are perhaps the most immediately 
accessible to ordinary experience. Yet, theoretical elucidations of the subject are enormously 
complicated and profound. The theory of long waves is one of several approximate theories 
created to relieve some of the complication. 

Long wave theory is based on two equations of the form 

a(u, ~)= O, (1.1) 

where A is a differential operator, u is a certain horizontal velocity, and y = q (x) is the equation 
of the free surface. These equations are, of course, only approximate, and, in trying to illuminate 
certain portions of  the theory, I was led to ask for an exact expression for A (u, t/). 

Now, the approximate equation (1.1) is normally derived [lJ by assuming that the pressure 
in the fluid is everywhere equal to the hydrostatic pressure. When one has an exact expression 
for A(u, tl), however, it is possible to ask when A(u, tl) is small (and, therefore, when (1.1) is 
approximately correct) without making the ad hoc hydrostatic pressure hypothesis. By this 
means, one can gain some insight into the question of when the long wave theory is valid. 

The question is interesting partly because doubt has been cast on the validity of the theory [2] 
since it predicts that the only steady flow in water of constant depth is the uniform one, a result 
that is known to be false. Although this particular problem has been resolved by Friedrichs' 
proof [3, 4] that the long wave equations are merely the first terms in a formal expansion in 
a parameter representing the depth, residual doubt about the theory remains partly because it 
is not known, in general**, when the expansion converges. 

There are two long wave equations (1.1), corresponding to the two unknowns u and q. 
Therefore, there are really two expressions A (u, t/), and the hydrostatic pressure hypothesis 
must somehow imply that both are small. From our point of view, however, from which we 
ask simply when the expressions A (u, q) are small, the long wave equations appear as the 
consequence of two distinct hypotheses. The first is that the water is shallow, which, for now, 
we may take to mean that the flow is a member of a one parameter family of flows whose 
depth goes uniformly to zero with the parameter. The second hypothesis is that the vertical 
acceleration is small. 

If both these hypotheses are made, the long wave equations result. But since they are distinct, 
it is fair to ask what happens when only one is assumed and not the other. By assuming that the 
water is shallow but not that the vertical acceleration is particularly small, we obtain a new 

* Supported, in part, by the National Science Foundation (GP-6632). 
** In special cases, the expansion is known to converge. See [5]. 
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set of equations that we shall call the shallow water equations to distinguish them from the 
long wave equations (1.1). 

If the velocities are small enough, one can linearize both the shallow water equations and 
the long wave equations. The two sets of linearized equations are identical. This is a conclusion 
that can also be drawn from my earlier paper [6] where, among other things, it was shown that 
the linearized long wave equations can be derived by the argument just described from the full 
linearized equations in which no long wave assumption appears. 

In this paper, we derive the shallow water equations in the nonlinear case and proceed to 
study some of their simplest consequences. In particular, we show that, unlike the long wave 
equations, the shallow water equations describe behavior much like the known behavior of 
water waves. In particular, we show that in water of constant depth the shallow water equations 
possess a periodic solution if the speed is subcritical. At the critical speed, the only flow is 
the uniform one. If the speed is supercritical, we point out that the hypothesis that the water 
is everywhere shallow is necessarily violated, unless the speed approaches critical speed as the 
depth upstream goes to zero. 

In this last case, the shallow water equations possess a solution that can be interpreted as an 
hydraulic jump. It is like a jump in that the height of the free surface goes from one constant 
value to another, but the flow is smooth through the transition region. This fact will lead us 
to posit the existence of a laminar hydraulic jump that should occur at slightly supercritical 
speeds. It would be worth the effort involved to obtain experimental confirmation of the 
existence of such a jump. 

In section 2, we derive the exact expressions for the quantities A(u, ~) appearing in the long 
wave equations. In section 3, the shallow water and the long wave equations are derived, 
and the sense in which the water is supposed to be shallow is more carefully explained. Sections 
4 and 5 are devoted to flows in water of constant depth in the subcritical and supercritical 
cases, respectively. 

At no point through section 5 will it matter to us whether the flow is irrotational or not. In 
many cases, however, this simplifying assumption is made, and in section 6, we derive a 
consequence for the shallow water equations. This consequence will be called the consistency 
relation, and it is used in section 7 to derive a first integral of the shallow water equations when 
the flow is steady and irrotational. 

2. Some Exact Formulas for Gravity Flows 

Throughout this paper, we shall be considering the flow of a non-viscous, incompressible 
fluid subject only to the force of gravity. In this section, we shall derive some exact formulas 
valid for any such flow. The quantities appearing on one side of these formulas are exactly the 
same as the quantities that are equal to zero in the long wave equations. 

To describe the situation, we introduce a rectangular coordinate system with the y-axis 
directed upward and the xz-plane horizontal. Let (U, V, W) denote the velocity of the fluid 
at any point, let p denote the (constant) density of the fluid, and let P denote the pressure. Then 
the equations describing the motion are 

1 
Ut + UU~ + VUy + WU~= - - Px , 

P 

v, + v v x  + v v ,  +wv  = - - 
1 

P y - g  , (2.1) 
P 

and 

Wt+ UW~+ VWy+ WW~= 1 P~ 
P 

Ux + Vy + W~ = 0.  (2.2) 
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We want  to describe the mo t ion  of the fluid over  a fixed b o t t o m  which we assume to be a 
surface having an equat ion of the form y = - h ( x ,  z). Since we wish there to be no flow through  
this surface, we require that  the no rma l  c o m p o n e n t  of  the velocity be zero there:  

V + Uhx + Whz = 0 when y = - h .  (2.3) 

Assume there is a free surface described by an equat ion  y = t/(x, z, t). Differentiat ing this 
equat ion total ly with respect to t, we find that  we must  require 

V = t/t + Ur/~ + Wt h when y = q .  (2.4) 

(2.4) is one of the two condit ions required at the free surface. The  other  is that  the pressure be 
constant  there:  

P = cons tant  when y = t/. (2.5) 

Equat ions  (2.1-5) are the usual equat ions  of water  waves (see [1] and [4]). To  analyze 
them further, let u, v and w denote  the value of U, V and W at the free surface: 

u(x,z,t)=u(x,~,z,t), 
v (x, z, t) = V (x, r/, z, t ) ,  (2.6) 

w(x, z, t )=  W(x, ~, z, t). 

Notice  that  since each of the lower case letters u, v and w represents  one of the componen t s  of  
the velocity evaluated at the free surface y = t/(x, z, t), u, v and w do not depend on y. 

We have immedia te ly  f rom (2.4) that  

v = t h + ur/~ + wt/z. (2.7) 

It will be convenient  in what  follows to let V denote  the two-dimensional gradient :  

V ~ , 

and to write 

u = (u, w ) .  

With this notat ion,  (2.7) becomes  

v = ~t + u.V~. (2.8) 

Differentiat ing (2.6), we find the following relat ions to be val id:  

ut -- (ut +q.  U.) l .=. .  

u~ = ( u ~ + ~ x E ) l , = . ,  

uz = (u~ + , z  u.)r. ~. .  

Consider  

ut+uux+wuz = [ a t +  u E +  w E +  u, (~ ,+  a , ~ +  w,z ) ] ,= ,  

= JUt+ UUx+ wuz+ vu.].=.  
1 

- P~ l y = . .  (2.9) 
P 

In a similar way, one can show that  

1 
vt+uv~+WVz = - - P r [ r = , - 9 ,  (2.10) 

P 
and  

Journal of Engineering Math., Vol. 4 (1970) 293-304 



296 M. Shinbrot 

1p~ =~ 
wt+UWx+WWz = - - . (2.11) 

P 

On the other hand, differentiating (2.5) first with respect to x and then with respect to z, we 
obtain 

(Px + 7xPy)ty= n ---- 0,  

and 
(P~ + 7~Py)Ir=,= O . 

Inserting the values of Px, Pr, and Pz given by (2.9-11) into these last two equations, we find that 

U t +UU x +WU z +7x(g+vt+Ul)x+Wl)z) = 0 
Wt + UWx + WWz + Tz (g + t~t + Ul~x + Wl)z) = 0 

or, in the notation we introduced before, 

ut+(u "V) u+(g+vt+u. Vv) Vt/-- O. (2.12) 
We turn now to the boundary condition (2.3). To write it in terms of the quantities 7, v, and 

u, notice that 

U'r=-h=U -- f ~-hUrdy 
(2.13) 

W[y=-h= w -- f ~-h Wydy. 

There is a similar formula for Vly=-h; integrating this formula once by parts, we find that 

Vly=-h = v- (h+r / )  Vrl,=n + (h+y)VyrdY 
- h  

= v-(h+7)Vr[ ,= n - (h+y)(g:,y+WJdy, (2.14) 
- h  

by (2.2). 
We substitute the expressions (2.13) and (2.14) into (2.3). This gives 

in { ~3 ~ [(h+y)Wy]}dy v+uh~+whz=(h+7)Vrly=n + ~x [(h+y)Uy] + ~z 
" - h  

By (2.7), 

rh+u(h+7)~+w(h+7)z=(h+7)VyJ,=, + [(h+y)Uy] + ~z [(h+y)Wy] dy 
- h  

0 i n (h+y)U, dy = (h+~) [v , -7~u , -~ ,w , ] ,=~  + ~ -h 

0 i n (h+y)Wydy. 
+Oz -h 

Therefore, 

7,+ [.(h + 7)L+ [w(h + . ) L  = (h+ 7)[v~ +~x+  w~- ,~  u , - ~ z  w,],  =n 

0 n 
+ ~--~f?h(h+y)Uydy+ ~zf_h(h+y)Wrdy. (2.15) 

By (2.2), the first term on the right of this equation is equal to 

(h + 7) fux + w~-(u:. + 7~ u,)-(Wz + ,1z W,) ].=, . 
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and this is zero by definition of u and w. Thus, if we let U denote the horizontal component of 
the velocity at any point in the fluid" 

U =  (U, W), 

(2.15) gives 

t h + V ' [ u ( h + , ) ] =  V" f "  (h+y)U, dy. (2.16) 
J -  h 

We summarize what has been derived in this section. Let (U, V, W) be the velocity of a free 
surface flow under gravity. Let 

U=(U,  W), 

and let 

Let u, v and w denote the values of U, V and W on the free surface y = ~], and let 

u = (u, w ) .  

Then, the quantities u, v, w and tl are related by the equations 

v : th+U "Vrl, 

u,+(u" V) u +(g + v,+u" Vv)Vq = 0,  (2.17) 

~h+ V' [u(h+t/)]  = V" f ~- h (h+y) Uydy. 

Equations (2.17) form the basis for everything that follows. 

3. The Approximate Equations 

It is instructive at this point to write down the classical long wave equations. They have the 
form [4] 

ut+(u 'V)u+gVq--O,  (3.1) 
= 0 .  

Comparing these equations with the second and third of equations (2.17), we arrive at the 
following criterion for the validity of the long wave equations: 

The long wave equations (3.1) may be expected to be valid in any flow in which 

Iv, + u. Vv[ ~ g (3.2) 

and, in addition, in which 

t'"_h(h+y)U, dy ~ l u ( h + , ) .  (3.3) 

It will be our purpose in this section to interpret conditions (3.2) and (3.3) physically to give 
a simple criterion for the validity of (3.1). After that, it will be possible simply to write down the 
shallow water equations and to state a criterion for their validity. 

The interpretation of (3.2) is immediate. The vertical velocity of a particle on the free surface 
is 

dr 
dt lh + u" Vtl 

: V ,  
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and the vertical acceleration of such a particle is 

dZ tl 
d t  2 - v t + u " V v  . 

Since this is the left side of (3.2), we see that (3.2) amounts to the condition that the vertical 
acceleration of a particle on the free surface is small compared with the acceleration due to 9rarity. 

(3.3) can be valid under various different hypotheses. We shall refer to (3.3) however as the 
shallow water condition. To see why, consider the left side of (3.3). Uy is the rate of change of 
the horizontal velocity in the vertical direction. If a denotes a typical acceleration and s a 
typical speed in a flow, Uy is of the order of a/s. Thus, the left side of (3.3) is of order 

a j "  (h+y)dy = 
a (h+ t/) a 

s -h S 2 ' 

and (3.3) will hold if this is of a smaller order of magnitude than u (h + t/). But h + t/is obviously 
the local depth. Therefore if 6 is a typical depth, (3.3) will hold if 

a6 
s- ~ @ 1. (3.4) 

This means, in particular, that if we have a family of flows in which the acceleration and the 
velocity are uniformly bounded while the depth goes uniformly to zero, (3.4) will surely be 
satisfied. A flow in which (3.4) holds may therefore legitimately be called a shallow waterflow. 

Notice that in a shallow water flow, the acceleration may be small, in which case the depth 
need not be. On the other hand, if the depth is small, the acceleration need not be small. There- 
fore, shallow water flows are governed by the equations obtained from (2.17) by assuming (3.3) 
but not (3.2), that is, by the equations 

v = t h+u 'V t / ,  

u,+(u" V) u+(9+ vt + u" Vv)Vt/= 0,  (3.5) 

n t+V 'Eu(h+n)]=O.  

Equations (3.5) will be referred to as the shallow water equations. 

4. Water of Constant Depth 

If h is constant, we choose the coordinate system so that the plane y = 0 coincides with the 
bottom. If, in addition, we suppose the flow to be steady and two-dimensional, we can take 
w=0, assume everything independent of z, and reduce (3.5) to the form 

V = U t / x ,  

uu~ + (g + uvx)~1~ = O, 

= o . 

These equations can be integrated easily to show that 

C 2 
gt/+�89 = ~- ,  (4.1) 

u~/= Q, 

where c 2 and Q are constants. Clearly, we must always require 

t/_> 0 (4.2) 

since in our coordinate system h=  0; thus, c 2 is positive, a~ the notation indicates. 
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Eliminating u from equations (4.1), we obtain the following ordinary differential equation 
for the free surface in two-dimensional, steady, shallow water flow in water of constant depth: 

Q2( 1 + 0~) = ( c2 - 2gq)02 �9 (4.3) 

Equation (4.3) can be solved explicitly for 0 as a function of x, and we shall solve it shortly. 
However, it is more illuminating to study (4.3) geometrically by means of a "phase-plane" 
diagram of 0x versus 0. The gross features of this diagram can be described immediately, since 
02 is a cubic in 0- Thus, the result must be as in Figure 1, which we now proceed to interpret. 

/ 
Figure 1. 

The left-hand branch of the figure may be ignored entirely since, as we shall see, on that 
branch (4.2) is always violated. As for the right-hand branch, the points on the q-axis marked 
E1 and E2 are equilibrium points. They correspond to constant solutions for which 0x = 0. 

In addition to these constant solutions, we have a periodic solution beginning at any point 
on the right-hand branch that moves clockwise around the branch and repeating itself once it 
comes back to the initial point. 

All this can be said without going into a detailed study of (4.3). We shall now consider more 
carefully the periodic solution represented by the oval in Figure 1. To do'so, it is convenient to 
describe the motion by means of parameters other than the constants c 2 and Q of equations 
(4.3). 

Let 0o be the maximum value of 0, and let uo be the velocity at the point where the maximum 
occurs. Then, according to (4.1b), 

Q = u0 0o �9 

Also, since 0o is a maximum, 0x is zero at the point where 0o occurs. Therefore, (4.1a) gives 

c 2 _- Uo2 +2900 . 

Substituting these constants into (4.3), we obtain an equation that can be written in the form 

2 2 . 2  Uo 00 q~ = (0o -  0) [2g02 - u~ (0o + 0)] .  (4.4) 

The right-hand side is zero when 0=t/0, which is as it should be. 0=0o is the right-hand 
equilibrium point E 2 of Figure 1. We can now see directly from (4.4) that 0 = 0o is a solution. 

Let 

F -  u~ (4.5) 
gqo 

be the Froude number of the flow. We shall call the flow subcritical if F < 1, critical if F = 1, and 
supercritical if F > 1. The supercritical case will be discussed in the next section; for now, we 
assume F_< 1. 
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One zero of the right side of (4.4) is t/=t/o. The others are 

t /= r/o [ F ! �88 + 8F)+] . (4.6) 

The lower sign corresponds to a negative value of q. Therefore, as we said earlier, the left-hand 
branch of Figure 1 corresponds entirely to negative values of 1/and may be ignored. The upper 
sign in (4.6) corresponds to the equilibrium point E1 of Figure 1. If F <  1, E1 occurs to the left 
of E2, as it should if q0 is a maximum of ~. Thus we see that whenever the flow is subcritical, 
there is a periodic solution of the steady shallow water equations. This is as it should be, for it 
is known that if F < 1, a periodic flow exists. 

When F ~ I ,  EI---,E 2, as (4.6) shows. Therefore, in the critical case, the only shallow water 
flow is the trivial one tl---~0 corresponding to the uniform velocity u =Uo. 

Finally, we note that (4.4) can be integrated to obtain further details of the flow. The result is 

f dtl (4.7) 
X - - X  o = Uor/o { ( r / o _ t / ) [ 2 g t / 2 _ u 2 ( r / o q _ t / ) ] } ~  ' 

where xo is constant. This integral can be evaluated in terms of inverse elliptic functions. We 
shall not bother to carry out the details. 

5. The Laminar Jump 

In this section, we continue to assume h-= 0 and study the supercritical case when the Froude 
number F exceeds unity. In that case, the flow is unstable [-7]. Therefore, any flow that is 
uniform and supercritical far upstream is likely to change over to another, stable regime. 
This other regime is' often also uniform, but it is subcritical and, therefore, stable. The transfer 
from one regime to another takes place over a rather short distance and is called a hydraulic 
jump. 

Such a jump is usually considered to be a discontinuous solution of the long wave equations, 
with appropriate conditions across the jump being added on. But this entails a strange situation. 
The long wave theory requires that the vertical accelerations be small. However, this can never 
be the case near a jump, where the velocity changes discontinuously. How, then, can the long 
wave theory explain the jump? Presumably, the difficulty is somehow taken care of auto- 
matically by the jump conditions, although exactly how this happens is obscure. 

One might hope that with the shallow water theory, which involves no assumption on the 
acceleration, the hydraulic jump might be explained directly, without the intervention of 
additional jump conditions, and even that the structure of the flow within the jump might be 
described. Unfortunately, we cannot quite achieve all this, no doubt because of energy losses 
that occur in most actual jumps. 

However, for Froude numbers less than two, the energy loss in a jump is very small. (Indeed, 
according to the curve in [9, Figure 8], the energy loss is strictly zero for F <  1.8.) In view of 
this fact, one might suspect that for Froude numbers less than, say 1.8, the usual explanation 
of the hydraulic jump is faulty, involving, as it always does, a loss in energy. We shall be led to 
this same conclusion from the shallow water theory which, as we shall see, predicts the existence 
of a jump, but one which, unlike the usual hydraulic jump, is laminar and which, therefore, 
takes place without loss of energy. 

The existence of this laminar jump must probably be left for experiment to determine. To 
aid in this task, we describe the flow through the jump, examine briefly the length and magni- 
tude of the jump, and show that the magnitudes of the hydraulic and the laminar jumps are 
asymptotically the same as the Froude number goes to unity. 

However, we begin by showing that it would be too much to expect that the shallow water 
theory explain the hydraulic jump in general since such jumps are usually not shallow in 
our sense. Consider a two-dimensional, uniform flow, beginning at x = - oo with speed Uo and 
depth 17o. We suppose that 
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ug 
Fo=  > 1 .  

gt/o 

As we just said, such a flow is unstable and is likely to jump to another uniform flow with 
speed u* and depth q~, say. Conservation of mass and momentum across the jump imply that 
u~ and q~ are obtained from u o and t/o by the formulas [8]: 

- 1 + ( 1  + 8Fo) ~ (5.1) 
q* = t/~ 2 ' 

and 

= Uo 1 + (1 + 8Fo) (5.2) 
4Fo 

We consider a family of flows in which qo~0. An interesting example occurs when the dis- 
charge Q is given. In that case, Uo = Q/qo, and the flow is shallow near x = - oe since, taking 
5 = t/o and s---Uo in (3.4), we find that that condition becomes 

a 
Q-7 r/~ ~ 1, 

and this is correct since qo--,0. 
We have Fo=QZ/gq~--,oe. Therefore, (5.1)and (5.2) give 

\ g~lo/ 

We wish to investigate whether the flow can be shallow to the right of the jump. To do so, set 
= t/*, s = u* in (3.4). We find that the flow is shallow if 

aQ 
(g~o)~ ~ 1. (5.3) 

But t/o~0. Therefore, (5.3) cannot be satisfied for fixed Q unless the acceleration goes to zero; 
and even more, goes to zero faster than qo. Since ~/o is approaching zero, however, while 11" 
actually grows, the jump must be extremely turbulent, and it is hard to make any predictions 
whatever about a. 

All of this assumes that Q is fixed, so that uo varies like 1/~/o. If uo goes to zero with ~/o in 
such a way that Fo ~ 1, on the other hand, things are different. In that ease, 

~/* ~ r/o , 

U~ ~ U 0 

and the flow is shallow to the right of the jump since it is shallow to the left. 
Therefore, we consider again the steady, two-dimensional, shallow water equations which, 

as before, can be written in the form (4.4). In the present context, the parameters Uo and r/o 
occurring in (4.4) are to be interpreted as the velocity and the depth infinitely far upstream. 

The phase plane diagram remains the same as in Figure 1, but the roles of Et and E 2 a r e  

reversed. When Fo > 1, E1 is the (unstable) equilibrium point (r/o, 0). E2 is the point (t/l, 0), 
where 

+  (F +8fo . 

The motion can now be described as follows. It begins at the equilibrium point Ea. Since E1 
is unstable, the point describing the motion will tend to leave Eo and move along the oval 
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curve of Figure 1. Since ~/must increase when the point leaves E~, qx must be positive. Therefore, 
the point that was originally at E~ will, upon meeting any slight disturbance, move away from 
E~ along the upper half of the oval curve of Figure 1, until it reaches E 2. Since E2 is an equi- 
librium point, the motion can stop there and, since E2 is stable, once having done so, the motion 
will remain uniform. The motion we have just described will be referred to as a laminar jump. 

It is important to notice that the height of this laminar jump is different from the height of 
the hydraulic jump, as a quick comparison of (5.1) and (5.4) shows. However, 

- -  - -  2 ( 5 . 5 )  
t/1 frO + ( r2  + 8F0) ~ 

-+1 

as Fo-+ 1. That the two heights should differ is not surprising, since the hydraulic jump involves 
an energy loss through the dissipation of heat, while the laminar jump, being laminar and 
non-viscous, involves no such loss. 

If this explanation is correct, we should expect the height of the laminar jump to exceed that 
of the hydraulic jump. And that is the case, since the quantity on the right of (5.5) is always less 
than one, as a simple calculation shows. 

Unfortunately, it is difficult to distinguish between the two kinds of jump on the basis of 
height alone since, if it exists at all, the laminar jump will only exist near F = 1, while the dif- 
ference in the height of the jumps is order (F - 1) 2. Indeed, (5.5) shows that ,/*/t h = 1 + 0((F - 1) 2) 
as F-} 1. On the other hand, the laminar jump does have a unique length, defined as the distance 
L required for the depth to move from ~/0 to ~/1. L can be computed from (4.7). If the jump starts 
at X=Xo and ends at x=x l ,  then L = x l - x o ,  while ~/is ~/0 at Xo and ~/1 at x,. Therefore, 

f~ '  dr/ L = u o ~o 
.o {("o - " )  [2g, 2 -  uo ~ ("o + ~)] ? '  

where ~/1 is given by (5.4). Writing q = ~/o ~ in this integral, we reduce it to the simpler form 

L = ~/0F~ (,,/,o d{ (5.6) 
oa { (1 -  {)(2r  { -Fo)}  ~'  

Since t/,/~/0 depends only on the Froude number Fo, the same is true of the integral, and we 
conclude that for fixed F0, L is proportional to qo. 

On the other hand, for fixed ~o, a slightly complicated but straightforward computation 
shows that as F0$1, 

L=tlo  + 0{ (Fo -1 ) :  . 

Thus, as Fo~ 1, the length of the laminar jump has a definite, non-zero limit. This is apparently 
entirely different from the behavior of the hydraulic jump. If Figure 6 of [9] is to be believed, 
the length of the hydraulic jump approaches zero as Fo approaches one. However, there is 
some question about the validity of this figure near F = 1, and the issue remains in doubt. 

6. Potential Flow 

So far, we have not assumed the flow to be irrotational. If it is irrotational, however, there is 
another relationship between ~/and u, in addition to (2.17), that is fulfilled. We shall derive that 
relation here. 

ff the flow is irrotational, there is a potential ~ such that 

U = ~ x ,  V = ~ y ,  W = ~ .  

It is well known that in this case, the three equations (2.1) collapse to the single Bernoulli 
equation 
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1 
~ + ~ ( ~  + ~b2 + ~2) = constant,  gy + _ p +  1 2 

P 
while (2,2) becomes just Laplace's equation 

~ + Cyy + Cz~ = 0.  

Now, if we define u as before, by (2.6), we find that 

= ( ~ + ~ / ~  ~) l~=~ - 

In a similar way, the following three formulas can be proved: 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

(6.3) and (6.4) can be used immediately to prove 

wx+tl~v~ = u~+~l~v~ . (6.5) 

In any flow derivable from a potential, the components of the velocity on the free  surface must 
be related by (6.5). Formula (6.5) will be referred to in the sequel as the consistency relation. 

Before proceeding, two remarks about (6.5) should be made. First, we note that although 
it depends on the hypothesis that the flow is irrotational, it is like (2.17) in that it is not ap- 
proximate. 

Second, it should be noted that for  two-dimensional f lows, the consistency relation degenerates 
to an identity. Indeed, if the flow is two-dimensional, we may assume it takes place in planes 
z = constant. Then, everything is independent of z, and w = 0. But when everything is indepen- 
dent of z, (3.5) becomes simply w~ = 0. Thus, in two dimensions the condition of irrotationality 
imposes no restriction on q, u, and v. This is the reason we did not derive the consistency relation 
earlier. 

7. Steady Flow 

When a flow is steady and irrotational, the consistency relation (6.5) allows us to obtain a first 
integral of the shallow water equations. Rather than derive this integral directly from the 
shallow water equations, however, we shall return to the basic equations (2.1-5), derive what 
we want directly from there, and then prove that we have integrated the shallow water equations. 

We suppose the flow to be steady and irrotational. Then, there is a potential ~, and Ber- 
noulli's equation (6.1) is valid. In (6.1), let y=t/ .  Then, the boundary condition (2.5) and the 
hypothesis that the flow is steady give 

1 2 o + + = 2 , 

where c is a constant having the dimensions of a velocity. On the other hand, we have im- 
mediately from the definitions of u, v, and w that 

�9 ~[y=,= u, ~yly=~= v, ~zlz=,= w. 

Therefore, we find 
c 2 

g +�89 +v: +w2) - 2 

o r  

c 
= ( 7 . 1 )  

where c is a constant. 
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We shall now show that  (7.1) and the consistency relation are completely equivalent to the 
shallow water  equat ion (3.5b). Differentiating the left-hand side of (7.1) and using the consis- 
tency relation, we find 

ex  [g"+�89 = g, +uux+  x+wwx 

= u" Vu + tl~(g + u" Vv), (7.2) 

by definition, (2.8), of v. In a similar way, differentiation of (7.1) with respect to z gives 

z[gt/+�89 2 + v2)] = (u" V)w + ~ ( g  + u. Vv). (7.3) 

An immediate  consequence of (7.2) and (7.3) is that  (7.1) is equivalent to (3.5b) whenever the 
consistency relation holds and the flow is steady. 

Thus, we see that  whenever  the flow is steady and irrotational,  the shallow water equations 
can be replaced by the following equivalent but  simpler set of equations : 

v = u ' V t / ,  

2g~ + (I ul 2 + v2) = c 2 ' (7.4) 

V. = 0 .  

along with the consistency relation (6.5). 
It is wor th  remarking, finally, that of the four steady shallow water equations (6.5) and (7.4), 

only (7.4c) is approximate.  (7.4a, b) and (6.5) are direct consequences of the exact equations 
(2.1-5) and the hypothesis that  the flow is iffotat ional .  
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